3.1 常用几何体的面积、体积及形心位置
表1.1-28 常用几何体的面积、体积及形心位置
名称简 图体积V侧面积A
全面积An形心位置s截
球
体 V=(π/6)h(3a2+h2)
=(π/3)h2(3R-h)
平截圆半径
a=;
h=R+A=2πRh
=π(a2+h2);
An=π(2Rh+a2)
=π(h2+2a2)
续表
名称简 图体积V侧面积A
全面积An形心位置s斜
截
圆
柱
体 V=(π/2)r2(h2+h1)A=πr(h2+h1)
An=πr[h2+h1+r
+]Ys=(r(h2-h1)/(4(h2+h1)
Zs=(h2+h1)/4+(h2-h1)2/(16(h2+h1)正
六
棱
柱 V=2.598a2h
对角线长度
d=A=6ah An=6ah+5.196a2ZS=h/2六
棱
锥 V=hAo/3
=0.866a2hA=1.5a
底面积
Ao=2.598a2ZS=h/4六
棱
台 V=(h/3)(A0
++A1)底面积A0=2.598a2
顶面积A1=2.598a12
A=3H(a1+a)
H为侧面梯形高ZS=
h(A1+2+3A0)
4(A1++A0)正
四
棱
锥 V=(1/3)abhA=(1/2)[b
+a]
An=ab
+(1/2)[b
+a]ZS=h/4
续表
名称简 图体积V侧面积A
全面积An形心位置s ...... (共1112字) [阅读本文]>>